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The gas dynamics of massive evaporation and
condensation
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We consider in this paper the gas dynamic field associated with liquid-vapour phase
change between two parallel liquid surfaces. The full nonlinear equations for a
compressible, viscous, heat conducting gas are considered with no limitations on the
Mach number. First the inviscid problem is formulated and the exact solutions found
for the temperature and velocity fields. While these solutions are qualitatively
similar to those found using linearized analyses significant quantitative differences
exist, especially at higher mass fluxes. Next the nonlinear, viscous field is obtained
for a vapour with a Prandtl number of 0.75, as the equations simplify for this case.
The results obtained show dramatic departures from the inviscid solutions: the
temperature profiles, which may no longer be monotonic, can manifest both
undershoots and overshoots. Cases exist, whose relevance to the phase change
problem is yet to be established, where the overshoot is many times the applied
temperature difference. Asymptotic solutions are also developed for small and large
values of the height parameter §/H which show interesting features; for small
heights the temperature profile is, surprisingly, quadratic in y while for large heights
the flow field is uniform with boundary layers at both surfaces. The restriction on the
Prandtl number is then removed. The solutions for arbitrary Prandtl number are
shown to merge smoothly to the appropriate inviscid solution as Pr—0. These
solutions also show that Pr =3 is a very good approximation for most gases and
vapours of interest.

The remarkable predictions that have been made here show that the role of
viscosity in the gas dynamic field in liquid vapour phase change has so far been vastly
underestimated. The present results will necessitate serious rethinking on the
inviseid, linearized theoretical framework that has so far, by and large, been used.
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488 P. N. Shankar and M. D. Deshpande

These results will also have a serious bearing on any future experimental
investigations of the phenomenon.

1. Introduction

Even though the phenomena of evaporation and condensation are so common in
nature and have been studied extensively, there are many aspects to them that are
still poorly understood. Part of the difficulty stems from the fact that it is difficult
to conduct simple, unambiguous experiments in surroundings which permit chemical
purity of the liquid and vapour. On the other hand, theoretical analysis needs to
overcome the hurdle posed by the fact that the problem is naturally posed only for
the velocity distribution function: thus either the Boltzmann equation or the
continuum equations coupled to appropriate Knudsen layers have to be solved. As
a consequence most analyses have been limited to the linearized low Mach number
case. We might also point out that a serious limitation so far has been our poor
understanding of the nature of the liquid-vapour interfaces. These have had to be
modelled in a possibly over simplified manner. Another issue that has been ignored
so far, and to which we here address ourselves, is that of the roles of viscosity and
nonlinearity in the gas dynamic field especially for large mass fluxes. It will be seen
that their effects can be very striking indeed.

Plesset (1952) was perhaps the first to attempt to compute, in the absence of any
contaminant, the evaporative mass flux between two pure liquid surfaces at different
temperatures (see figure 1). The one-dimensional continuum equations hold in the
bulk of the fluid; for low Mach numbers, ignoring viscosity, these were solved and
coupled to separate analyses of the Knudsen layers to yield a result for the mass flux.
While the basic idea both in this work and in Plesset & Prosperetti (1976) was correct
the mass flux and the temperature field were incorrectly computed because the
temperature was assumed to be continuous at the liquid—vapour interfaces. It was
Pao (1971) who made the remarkable discovery, by solving the linearized Boltzmann
equation for the vapour, that in general the temperature suffered large jumps at the
interfaces; jumps that could, in principle, be large enough for the temperature
gradient in the vapour to oppose the applied temperature gradient. Although this
surprising result has since been confirmed for the plane geometry (Matsushita 1976 ;
Aoki & Cercignani 1983), for polyatomic molecules and gas mixtures (Cercignani
et al. 1985; Shankar 1988) and for the spherical geometry (implied in Shankar (1970)
and in Onishi (1986)), it still remains controversial. For example Koffman et al.
(1984) have even suggested that the inverted temperature profile casts a shadow of
doubt on the fundamental theory. Although an experimental verification would seem
of crucial importance and has, indeed, been suggested a number of times, the only
experimental study available seems to be that of Shankar & Deshpande (1990a).
Using mercury as a working fluid they were able to establish the existence of large
temperature jumps at the interfaces; however, they were unable to conclusively
establish the existence or non-existence of the inverted temperature profile.

The aim of the present study is to explore an aspect that has so far been neglected :
the role of viscosity and nonlinearity in the phase change phenomenon. It has always
been assumed, principally because attention has been limited to small mass fluxes,
that viscous normal stresses and dissipation would play insignificant roles; in a sense
this was inconsistent since thermal conductivity was always included. Referring to
figure 1, our attention will be limited to the gas dynamic field between the hot and
Phil. Trans. R. Soc. Lond. A (1991)
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cold liquid A
g

gas dynamic ~ m Knudsen
H field layers

T
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Figure 1. The gas dynamic field between an evaporating liquid surface and
a condensing liquid surface.

cold liquid surfaces, outside the Knudsen layers which are restricted to distances of
the order of a mean free path A, adjoining the liquid surfaces; naturally, we are
interested in the continuum régime with A very much smaller than the distance H
between the surfaces. We emphasize that we will not be concerned with the Knudsen
layers or with solving the complete phase change problem; this will permit us to
clearly separate out and identify the role played in the phenomenon by convection
and dissipation in the continuum field. Initially our interest was motivated by
certain features of the temperature field found in our experimental results. We have
since found that the viscous effects at high mass fluxes are remarkable in their own
right and appear to be of very general interest.

Before proceeding with the formulation and analysis of this problem it may be
pertinent to point out its relationship to the problem of the determination of shock
structure based on the Navier—Stokes equations (see, for example, Morduchow &
Libby 1949 ; von Mises 1950). No doubt, the one-dimensional gas dynamic equations
for a compressible, viscous, heat conducting fluid hold in either case. However, two
crucial differences arise, namely, the boundary conditions are different and the
interval is finite as opposed to infinite. These lead to strikingly different phenomena.

2. Formulation of the gas dynamic problem

It will prove convenient to normalize all lengths by H, the distance between the
liquid surfaces (see figure 1). In what follows the subscripts 0 and 1 will refer to the
conditions of the vapour (or gas) at the lower and upper surfaces respectively. Then
all the gas dynamic field quantities will be normalized by ,, 3, f, and T} the lower
velocity, density, pressure and temperature respectively. With this chosen non-
dimensionalization, the steady, one-dimensional gas dynamic equations for a
compressible, viscous, heat conducting fluid take the form

p/0=1, (11)
de 1 dp 41d¥
av - = 1.
dy M2dy+3Redy2’ (1.2)
dT  (y—1) dp (S)dZT 4(5) (dv)2
RV A Y P S + —1)PrMi{—], 1.3
oy~ v Tay\glaptalg) T (1)
p=pT. (1.4)

Phil. Trans. R. Soc. Lond. A (1991)
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It may be observed from the above that the dynamic and thermodynamic
properties of the fluid such as viscosity i, thermal conductivity k, specific heat ¢,
etc., have been assumed to be constants; the equation of state has also been assumed
to correspond to that of a perfect gas. These assumptions are all quite reasonable for
the situations, far from the critical point, of interest to us. The equations above
contain, apart from the specific heat ratio y, four dimensionless parameters

Re = (p,,H)/ji, the Reynolds number;
M = ¥/é, the Mach number;

§/H =Fk/ (e, H), the height parameter based on the thermal boundary layer
thickness;

Pr = jc,/ k, the Prandtl number,

where 77 is the mass flux and ¢ is the sound speed. _

It may be noted that while the thermal boundary layer thickness 8 has played an
important role in earlier investigations (see, for example, Aoki & Cercignani 1983),
the Mach number, Reynolds number and Prandtl number have appeared
infrequently, if at all. The following relationship between §/H, Re and Pr

Re = (Pré/H)™? (2)

should also be noted. For the setting of the present investigation it appears more
natural to deal with §/H and Pr and hence we will primarily refer to these quantities
alone with the understanding that the Reynolds number can be computed from (2)
above.

Regarding the boundary conditions, we first observe that the interval of interest
now lies in 0 <y < 1. All the vapour field properties are now assumed given at the
lower surface i.e. v, = Ty = p, = 1 and M (and Re) are given. For the general viscous
case two conditions then need to be specified at the top surface e.g. p, and 7} may be
given. For the inviscid case corresponding to Pr = 0, however, only one condition can
be specified, e.g. 7} or p,; here we shall take 7} to be given in this case.

In summary we see that, in addition to v, the problem is fully specified by five
other non-dimensional parameters: §/H, M, Pr, p, and T;. We shall in what follows
find that these six parameters span a very rich and intriguing variety of flow
phenomena. Note that if the bulk viscosity /iy, of the vapour is not insignificant the
present analysis will still be valid provided that the viscosity # is enhanced by
0.75/iy ; no other change is necessary. It should also be pointed out that though this
study has been motivated by the phase change phenomenon, the equations and
boundary conditions considered refer to a very general gas-dynamic setting. Hence
the formulation and results should be of considerable interest to the fluid dynamic
community at large.

3. The inviscid problem and solution

We shall first consider the situation where the gas (a term which will from now on
refer to gas or vapour) is assumed to be inviscid. While this assumption has been
made either explicitly or implicitly, almost universally for the phase change problem,
the thermal conductivity has always been retained. On the surface it may seem
inconsistent to treat an inviscid fluid as heat conducting. It becomes clear on more

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. (@) The temperature profile as a function of §/H for a Mach number M, = 0.5, T, = 0.95.

(b) The temperature profile as a function of 6/H for a Mach number M, = 2.0, T =0. 95 (¢) The

effect of Mach number for a fixed & /H 0.1 and comparison with the exponentla,l profile. (a)—(c);
-, Exponential.

careful scrutiny, however, that while at low Mach numbers viscous dissipation and
viscous normal stress effects are likely to be inconsequential, thermal conduction
cannot be ignored; in fact, at very low speeds energy transport takes place almost
entirely by conduction. Thus this type of ‘inviscid’ model, while inconsistent for
higher Mach numbers, is likely to be relevant to situations involving sufficiently low
mass fluxes.

The governing equations can now be obtained by setting Re =oc0 and Pr =0 in
equations (1.2) and (1.3) which reduce to

dv 1 dp
drT _=n, dp (é)dzT
W= dy+ 7 (3.2)

As regards boundary conditions, all the fluid properties are prescribed at the lower
surface while the temperature alone is prescribed at the upper surface, i.e.

p=v=p=T=1 at y=0, (4.1)
=T="T/T, at y=1. (4.2)

The momentum equation integrates immediately to
v(1/yMy)p = Bff = 1+1/yM;, (5)

where the constant B is the non-dimensional ‘total momentum flux’. Using (1.1)
and (1.4) to eliminate p in (5), we obtain an expression for the velocity

_ {0-5[32"—V(BE"2—4T/7M3)], it M, < 1/vy,
T 0SB+ v/ (BE—AT/yIR)), i My> 1/v/y,

Phil. Trans. B. Soc. Lond. A (1991)
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which clearly indicates a critical Mach number equal to 1/4/, a point to which we
will return later. If we substitute for the pressure from (3.1), the energy equation (3.2)
can be integrated once to yield

T =—Yy—1)M3v*+(8/H) AT /dy + A¥, (7)

where the constant A¥ is, by the boundary conditions related to the slope of the
temperature at the lower surface by

A¥ = L+ 1y — 1) M2 —(§/H) (dT/dy),. (8)

We can now eliminate » from (7) to obtain a single nonlinear equation for the

temperature. If we define
=V (Bf*—4T/yMy), 9)
z has to satisfy

dz _ (7+1){ 2(y—1) .. ( 84f  (3y—1) *2)}
zd?/ 4y(6/H) e (y—i—l)B et (y+ )M (y+1) B¢, (10)

where the {+} sign is chosen as M, S 1/4/7y. The exact solution for 7'(y) is now given
implicitly by

4y S\[1 2+bz+c b
_ OV Ly, [F 22| 0 p 1.1
y (7+1)(H)[21n Atby+e| 2d (z’]’ b
|2z+b d2zy+b+d )
4
P =" Berbrdz,o—d "%
2 [arctan {(2z+b)/d} —arctan {(2z,+b)/d}], b* < 4c (11.2)

_2r=N) e 84F By—1) *2) b
= yrn o ¢ ((V+1)M§ TESTRE d=+/[b*—4c|.  (11.3)

It may be noted that in the formulae above A} is yet to be determined ; this is now
done by forcing y to be 1 when z = z;. This can only be done by iteration which,
however, is considerably simplified by two observations. If the temperature profile
is monotonic, as it indeed is in this case, Af has, if 7} < 1, to be greater than 4%, the
limiting value when §/H >0 if T} > 1, A* < A%, Seeondly, from (8) it follows that
A¥ =1+0.5(y—1)M;.

Flgure 2a and b shows the temperature profiles for various values of the height
parameter §/H at a subsonic and a supersonic Mach number. We can see in both cases
that the profiles are monotonic and that they are qualitatively not too different from
the exponential profiles resulting from the linearized theory (Plesset 1952). The
differences are naturally more pronounced at small §/H, when convection
predominates over conduction, and large M,, when nonlinear effects are expected to
become more important. Figure 2¢ shows the effect of varying the Mach number 3,
for a fixed 6/H = 0.1. Notice that the profiles depart non-monotonically from the
exponential profile at low M, to a near linear profile around M, =1 and to an
exponential profile again at high M,. This phenomenon is connected again with the
behaviour in the neighbourhood of the critical Mach number, M, = 1/4/y. An
important difference between the linearized and the present nonlinear solutions is
that the velocity and pressure are uniform in the former case but not so in the latter;
this can be seen in figure 3.

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\

\
Vo \
( X

J (

Py

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

h
A

\
\\
L2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Gas dynamics of evaporation 493
v p
10F
//7
L /o
01 / /’
I ! Nl
y (3. )
0 1! ,/\10
L v,
[
05+ [
/1
- / /
I
g
- I/
I I
5/
I j
0 s L
0.90 095 10 105

Figure 3. The velocity and pressure profiles at a Mach number M, = 0.5, T} = 0.95. Note that in
the linearized case both velocity and pressure would be uniform.

It was pointed out when deriving (6) that for the purposes of the present analysis
1/4/v represented a critical Mach number. The physical explanation for its
appearance follows from comparing the magnitude of the convection term in the
energy equation (3.2) with the magnitude of the pressure work term. It is easy to
show that they are in a ratio proportional to (1 —7yM?) which vanishes as M —>1/4/y
i.e. in the neighbourhood of M, pressure work dominates convection, irrespective of
mass flux, and is balanced by conduction alone. The nature of this bifurcation can
also be seen more clearly as follows. Since (5) together with (1.1) and (1.4) imply that
the pressure is given by

p =05 yM{ (B} £~/ (Bf*—4T/yM})] (12)
and since the entropy for a perfect gas is given by
s=1+(¢,/8) In T—(B/3,)Inp (13)

it is clear that for a given M, the temperature is a function of the entropy alone,
independent of 6/H and T /T,. Thus on a T-s diagram, as sketched in figure 4, for a
given M, or mass flux the flow has a unique locus independent of §/H and T,.
Equations (3.1) and (3.2) can also be combined to show that the following equation
holds

é)ﬂ_{_1~M2 }d_T (14
A)dyt  \1—yM?) dy’ )

where M = M(y) is the local Mach number. It is now possible to show that if
M, < 1/+/7y then M(y) < 1/4/7y and that if M, > 1/4/v, M(y) has to be greater than
1/4/vi.e. M cannot equal 1/4/7y in the interior of the field. In figure 4 this also implies
that while 7} can be greater or less than 7}, (= 1) both have to be on the same side

of the peak of the curve (corresponding to M = 1/4/7y). Note too that the critical
Mach number implies a maximum permissible 7} given by

T = 1+ (1 —yDMG)* /4y M3, (15)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. The locus of the gas dynamic flow on the 7-s diagram for a given Mach number M. The
point 0 corresponds to the lower surface, 1 to the upper surface when 7} < 1 and 1’ to the upper
surface when 77 > 1.
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Figure 5. (@) Temperature profiles for a supercritical Mach number, M, = 0.8, 7} = 0.95.
Corresponding exponential profiles are shown by dotted lines. (b) Temperature profiles for a
subcritical Mach number, M, = 0.5 with 7} > 1. Corresponding exponential profiles are shown by
dotted lines.

The unusual nature of the temperature profiles in the range 1/4/y <M, < 1 is shown
in figure 5a. The profiles are all concave (upwards) while for Mach numbers outside
this range the temperature profiles are always convex as shown in figures 2 and 5b.
In figure 5b the computations are for a case where 7} > 1 (i.e. T, > T)). It is to be
emphasized that while 7] > 1 corresponds in the evaporation problem to the
anomalous temperature distribution case, in general both 7} < 1 and 7} > 1 are of
interest. While our analysis is general and the frame work is non-dimensional, all the

Phil. Trans. R. Soc. Lond. A (1991)
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computations in this paper are for mercury vapour around 100 °C, the case of
greatest experimental importance (Shankar & Deshpande 1990a). For this reason y
has been taken to be 2 for all the computations shown.

Using (10) and (14) we can prove the following assertions regarding the inviscid gas
dynamic field.

1. Provided 7} < 7T},, the solution exists for all ¢ 5/H and all M, except M, = 1/4/y.
For M, = 1/+/y, T has to be less than 7}, and one can in ﬁgure 4 descend either by
the subcritieal, deeelerating (left) or supereritieal, accelerating (right) path ; however,
while the solution exists for all heights on the accelerating path the height has to be
less than a critical height on the decelerating path.

2. The temperature profile is always monotonic.

3. If M, <1/4/y the flow accelerates if 7} > 1 and decelerates if 7} < 1. The
opposite hold if M, > 1/4/y.

4. It is not possible to accelerate or decelerate through the critical Mach number
My =1/v/7.

5. It is possible on the supercritical branch to accelerate or decelerate through the
maximum entropy point, M = 1.

We shall conclude this discussion of the inviscid field by pointing out, in summary,
that the nonlinear effects are mild and are important only for moderate M, and small
§/H. A number of interesting features appear at the higher Mach numbers especially
at and beyond M, = 1/4/y. We shall see, however, that the inclusion of viscosity
completely changes the picture: even the qualitative features are totally different.
Thus an inviscid model makes sense only for low or moderate Mach numbers.

4. The viscous solution: Prandtl number = 0.75

We shall now consider the role of viscosity in the gas dynamic field. Before
considering the general case, we shall in this section consider the field for a gas with
Pr = 0.75. This is motivated by the fact that in this case the hydrodynamic and
thermal boundary layer thicknesses are of equal magnitude and as a consequence the
energy equation can be integrated, as noted in the earlier shock structure
investigations, to yield an expression for the total enthalpy. One is then left with a
single nonlinear equation to solve for the velocity. From a practical point of view, the
case is far from being artificial as most gases and vapours have Prandtl numbers in
the range 0.7-1.0, e.g. mercury vapour, in the temperature range of interest to us, has
a Prandtl number around 0.69 while water vapour has a Prandtl number close to
0.94. Thus the simplification is of genuine utility.

In order to obtain an explicit expression for the dimensionless total enthalpy
Q = T+0.5(y—1)M2v? one first eliminates the pressure term in the energy equation
(1.3) by using the momentum equation (1.2) to obtain

ar dv ([ 8\aT L \ d2  (dv)?
gy = () o-aned(g) g (g)) o

Now if Pr =2, the above expression can be immediately integrated to yield

Qy) = T+0.5(y— ) Mio* = A*+D exp {y/(5/H)}, (17)

where the constants D and A* are explicitly given by
D = {(T,—1)+0.5(y — 1) M3} — 1)}/ (exp (H/8)—1), (18.1)
A* =140.5(y—1)M;—D. (18.2)

Phil. Trans. R. Soc. Lond. A (1991)
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Equation (17) implies that the total enthalpy @(y) has an exponential profile across
the field; (18.1) further implies that for small §/H a boundary layer of thickness of
order §/H exists near the upper surface. To get a single equation for the velocity one
first integrates the momentum equation to obtain

—(1/yM2)p+3Re  dv/dy + B* (19)

with B* a constant (cf. B¥ in the inviscid case) and Re™ = 38/H since Pr = 2. Using
(1.1), (1.4) and (17) we get the following equation for the velocity

o\ dv (y+1) A*+D exp (yH /) _ Qy)
4 B 2 _
(H)vdy+b’ v ” v I = (20)

Though the equation is of first order, two boundary conditions need to be satisfied:
v(0) =1, v(1) =v»,. This is indeed necessary as B* is as yet unknown and its
determination is akin to that of determining an eigenvalue. One may recall that in
the inviscid case B¥, the total momentum flux, was an integral of the motion; as a
consequence the locus of the flow lay on a prescribed trajectory in the 7-s plane
(figure 4). In the viscous case B* is not an integral of the motion and depends in
essence on the slope of the velocity at the lower boundary. Since the temperature is
therefore not a function of the entropy alone, with the mass flux as a parameter, the
gas dynamic flow has no simple trajectory in the 7'-s plane. Some of these complex
trajectories, computed for the viscous case, are given in Shankar & Deshpande
(19905).

The innocuous looking nonlinear equation (20) does not appear to have a simple
closed form solution and has in general to be solved numerically. For all the
computations presented in this paper the procedure was as follows. An initial value
of B* was chosen and the equation integrated using an accurate Runge-Kutta
scheme to give a value for »(1). If »(1) was not equal to v, the prescribed value, B*
was changed and the procedure repeated until |v(1)—v,| was sufficiently small. A
reasonable starting value for B* is B} = 1+ (yM?)™1; the direction in which to
proceed is then suggested by (19) and the sign of (v, —1). Once B* and v»(y) are
determined 7' can be found from (17) after which all the other variables can be
computed.

Figure 6a—e shows the results of computations carried out for M, = 0.5 and
T, = 0.95. Figure 6a and b depicts the variation of velocity and temperature between
the surfaces as a function of the height parameter §/H. The velocity decreases
monotonically with y for all values of 8/H ; this appears to always be the case, as
one might expect even when viscous forces are at play. For large 8/H the velocity is
linear in y, as in the inviscid case ; but for 6/H —> 0 the velocity is uniform, at a value
between v, and 1, over most of the field with boundary layers at either surface. The
boundary layers become thinner ag 8/H — 0. The temperature profiles shown in figure
6b are quite unexpected. For large §/H the profiles are linear; but for §/H >0 the
profiles are not monotonic and actually show a temperature overshoot These viscous
results immediately show a totally different qualitative and quantitative picture
from the inviscid case. Again for §/H 0 the temperature takes a uniform value,
greater than both 7} and 7} over most of the field with boundary layers around
y = 0, 1. The Mach number proﬁles in figure 6¢ can be inferred from the behaviour of
vand 7' It may be recalled that in the inviscid case the upper pressure p, could not be
specified arbitrarily ; indeed p, was determined by the values chosen for M,, §/H and
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J
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2
M
Figure 6. (a) The velocity profile as a function of g/ﬁ for a fluid with Prandtl number 0.75.
M,=0.5, T, =0.95 and p, = p,; = 1.0338. (b) Temperature profiles for the same conditions as
in (@). (¢) Mach number profiles for the same conditions as in (). (d) Temperature profiles in the
vapour as affected by the pressure ratio. Pr = 0.75, M, = 0.5, T, = 0.95and §/H = 0.1. (¢) The Mach
number distribution as affected by the pressure ratio for the same conditions as in (d).

T,. Let us call this value of p,, p,;. So far the computations displayed in figure 6a—c
were for p, = p,; = 1.0338; in the subcritical inviscid flow of §3 a decreasing
temperature is accompanied by compression. But the viscous field is not so limited
and can accommodate other pressure ratios too. The variation of the temperature
field with p, is shown in figure 6d for M, = 0.5, T, = 0.95 and §/H = 0.1. Once again
the temperature profiles are counter intuitive: for pressure ratios greater than 1 a
temperature overshoot occurs, for small pressure ratios a temperature undershoot
occurs, while for still lower ratios the undershoot is followed by a very large
overshoot. For p, = 0.1 the undershoot is just a little more than the applied
temperature difference while the overshoot is about 18 times the applied gradient.
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Figure 7. (@) The velocity profiles in the vapour for various values of 6~/ﬁ Pr=0.75,M,= 2.0,
T, =0.95, p, = 0.94179 = p,,. (b) Temperature profiles in the vapour for the same conditions as
in (a). (c) Mach number profiles for the same conditions as in (). (d) The effect of the pressure ratio
on the temperature profile. Pr = 0.75, M, = 2.0, 7, = 0.95, §/H = 0.1. (¢) Mach number profiles
corresponding to the conditions in (d).

This is particularly surprising since the flow is accelerating in this case with the flow
becoming supersonic around y = 0.66 and still the gas heats up instead of cooling.
This is purely due to viscous dissipation. Finally figure 6e shows Mach number
profiles as a function of p, : large variations occur once p, is small enough for the flow
to become supersonic.

Other than in some rare situations, in explosive ablation for example, supersonic
values for M, are unlikely to be relevant to the phase change problem, especially as
conceived till now. On the other hand in the general gas dynamic context in which
we are interested, it is natural to inquire as to what happens when M, goes
supersonic. Figure 7a—e shows the results of calculations done for a supersonic Mach
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Figure 8. (a) The velocity and pressure fields as a function of §/H for Pr = 0.75, M, = 0.5, T, = 1.10,
p, = 0.91668 = p,,. (b) The temperature field for the same conditions as_in (a). (c) The effect of
varying pressure ratio on the temperature profiles. Pr = 0.75, M, = 0.5, 6/H 0.1, 7, =14.

number M, = 2.0 with 7} = 0.95. Figure 7a—c shows that the profiles are much closer
to the 1nv1smd solution than in the subsonic case. For the parameters shown , 7' and
M are all monotonic in y for all the values of § /H considered ; the temperature suffers
no undershoot or overshoot and the profiles are linear for §/H —>o0. This was for
= p,; = 0.94179. If we let p, depart from this value the temperature profiles be-

come most interesting as shown in figure 7d; large temperature overshoots occur for
both smaller and larger values of p,. For p, = 10 the overshoot is as much as 25 times
the applied difference (1—7})! One might conjecture that the large temperature
rise through dissipation might be connected with the compression of the vapour.
This is only partly confirmed by the Mach number profiles shown in figure 7e, as
a significant temperature rise occurs for p, = 0.5 even though the vapour expands to
a Mach number in excess of 3.9.

In figures 6 and 7 7] is less than 1 corresponding, in the phase change context, to
a normal temperature distribution. The situation in the gas dynamic field, pertinent
to an anomalous temperature distribution, is depicted in figure 8, where 7] is greater
than 1. The velocity and temperature fields are similar to those obtained for 7} < 1.
While p, was chosen to coincide with the inviscid value p,; for purposes of
comparison, there is in fact no real restriction. Note too that in principle 7] (> 1) is
not restricted in the same way as in the inviscid case (see equation (15)).

The effect of varylng the Mach number M, on the temperature distribution, for
ﬁxed §/H,T,, ete., is shown in figure 9a and b for two values of p,. In figure 9a

= p,; for M, = 0.5, while in figure 9b p, = p,, for M, = 2; in the first figure the gas

suffers compression while in the second it expands. Once again one is struck by the
significantly different qualitative pictures. In figure 9a temperature overshoots of
varying magnitude occur at all Mach numbers and (d7'/dy), > 0 at all but the lowest
Mach numbers. In figure 96, on the other hand, there are no temperature overshoots
and (d7'/dy), < 0 for all Mach numbers. Equally significant is the S-shaped profile
for M, = 0.5: profiles such as these have been observed experimentally (Shankar &
Deshpande 1990a) a point to which we will return later.

Finally, figure 10a and b relates to a somewhat extreme situation where the
temperatures in the fluid rise to almost unbelievable levels. The Mach number at the
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Figure 9. (a) The effect of varying the Mach number M, on the temperature distribution. The upper

pressure p,, = 1.0338 = p,, corresponding to M, = 05 Pr=0.5, T, = 0.95, 6/H = 0.1. (b) The

effect on the temperature distribution, of varying the Mach number M,. The upper pressure
= 0.94179 = p,, corresponding to M, = 2.0, Pr = 0.75, T} = 0.95, 8/H 0 1.

()

3 1
10° 0" 10!

o/H
Figure 10. (@) Some remarkable temperature distributions corresponding to flows involving severe
expansion. Pr = 0.75, M, = 0,39261, 7} = 0.94638, p, = 0.054348. (b) The maximum temperature
in the field as a function of 6/H for the data considered in (a).

lower surface is modest, less than 0.4, but the pressure ratio is sufficiently small
(p, = 0.05) to force the upper Mach number M, to be greater than 7. The peak
temperature ratio is greater than 3.4 (i.e. more than 65 times the applied temperature
difference); as mlght be expected, since dissipation is likely to be greater for large
§/H, the ratio is greater at large 6/H. It must be noted that if T, = 100 °C the
maximum temperature in the field will be in excess of 1000 °C! The magnltude of the
viscous heating in the gas is quite astonishing and we feel that there are likely to be
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Table 1. The constants A* and B*; Pr=0.75, T, = 0.95
M,=05 p,=103376 M,=20 p, =0.94179

A A
s " ax Bx T ax B*
0.05  1.083330 3.452976 2.333285 1.149990
0.10  1.083333 3.452979 2.333286 1.149911
050 1093184 3.462356 2.337457 1.146214
1.0 1.119970 3.492771 2.348799 1.141581
5.0 1.367684 3.806860 2.453691 1.106465
10.0 1.681970 4.210678 2.586761 1.062858

other physical situations, perhaps in astrophysics, where such effects are likely to be
actually seen. Figure 10b clearly suggests that hmltmg solutions are likely to exist
for 6/H oo and §/H >0. We shall derive these in the next subsections, but first
present table 1 which lists values of the constants A* and B* as functions of 8/H for
a particular set of values for M, 7} and p,. Note again that limiting values for the
constants are suggested for 3/H»O in the other limit they appear to increase
linearly. We now take up these asymptotic analyses.

4.1. The solution for small heights (8/H )

All the examples in the previous subsection suggest that an asymptotic solution
exists for 6/H >0, or for small heights. On physical grounds one would expect the
velocity, in this limit, to be linear in y and the solutions presented so far suggest the
correctness of this idea.

For 8/H oo the total enthalpy @(y) given by (17), has the expansion

Qy) = Qo_(Qo_Q1)y+(1/2X)(Q0_Q1)(y_y2)+0(X_2), (21)

where y = §/H, is the height parameter. Equation (20) for the velocity may then be
written

dv (y+1) _L _ i _ _
w10, g+ g AQu—y <00, 22

where AQ = @,—@,. Now assume that the velocity has, for y ->00, an expansion of
the form
v=uO+y TuP+xFu® 4. (23)

All the computational results suggest a linear form for the leading term
w® =1—(1-v)y, (24)

which satisfies the boundary conditions. The leading term in the expansion for B* is
then suggested by (22)
B* ~ y BV = y(1—v,). (25)

Equations (24) and (25) constitute the solution to leading order for y —~o0. To get the
first-order correction we substitute the above forms into (22) to get the equation
relevant to order y°(= 1)

w® du® /dy + {du® /dy + B*V} = (@, — AQy) + [(y+1)/2y] wOF — Bx(0)4,(0) (26)
It is to be noted that B*® is yet to be determined and that the term in curly brackets
Phil. Trans. R. Soc. Lond. A (1991)
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[

Figure 11. (a) (“omparmon of the temperature profiles as predicted by the asymptotlc theory for
large §/H with the ‘exact’ solution. ———, Equations (27, 17); ——, ‘exact’ solution. Pr = 0.75,

=0.5, T, = 0.95, p, = 1.0338. (b) As in (a). ———, Equations (27, 17); , ‘exact’ solution.
Pr = 0.75, M, = 2.0, T, = 0.95, p, = 0.94179.

is identically zero. Equation (26) can easily be integrated and the boundary
conditions used to determine B*©®. We therefore obtain to order y™* in the velocity,
the following solution as y —o0

AQ 1
v(y) = {1—(1—v)}+ —1[AQ Mz{ +<_A1v__z§2((,)2) (lnll—AvyI)}
+0.5((y+1)/7) (y—%Avyz)—B*‘O)y], (27.1)

AQ 1 1 1
B*—XAv+[AQ M2{1+(E—f—é) (ln|1—Av|)}+g—;;/—)(1——éAv)], (27.2)

where Av = 1 —v, and AQ = @, —@,. The temperature is of course given by (17) and
the above. Figure 11a and b clearly shows that the _asymptotic solutions derived
above for §/H >0 are excellent approximations for §/H values as low as 1 for the
subsonic case and as low as 0.1 in the supersonic case. Naturally the B* values also
check but we refrain from giving the data.

4.2. Asymptotic analysis for large heights 5/1? —0)

We have seen from all the computational results presented so far that when
8/H 0 the flow quantities become uniform over most of the field with boundary
layers near both the surfaces. In order to derive the flow field in this limit let us assume
that when y = 8/H — 0, v has the expansion

v =u®+xyu®+0(y?). (28)

As we shall only derive the leading-order term «(® we shall in what follows drop
the superscript zero. Since in this limit

Q(y) = Q0+AQ(1—-ey/X)/(el/X_1) — Q0+0(e_1/x)

Phil. Trans. R. Soc. Lond. A (1991)
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except in the neighbourhood of y = 1, equation (20) for the velocity reduces to
xudu/dy+B*u—[(y+1)/2y]u* = Q/vM;. (29)

Thus the total enthalpy over most of the field is constant and equal to the value
at the lower surface. Now if we let y - 0 in (29), the derivative term disappears giving
the classical indication that we have a singular perturbation problem on hand and
that inner expansions will have to be derived to complete the solution. No matter we
conclude that over most of the field the velocity is constant, i.e. v = v, and given
by

Btv,—[(y+1)/2y]v, = Qo/ Y M5, (30.1)

Vo =¥/ (y + IIB* £ V{B*=2((y+1)/7) Qo/ YM}]. (30.2)

Observe that B* is yet to be determined. To determine B* we construct inner
expansions around y = 0 and 1 and match them to the outer solution (30); matching,
however, does not lead to the determination of B*. This is achieved by inserting the
solutions into an integral identity and solving the resulting equation for B*. If we
integrate (20) from y = 0 to ¥y = 1 we obtain the exact relation

_( _y+1) 1o Q@ +AQE—1)" ¥ AQ

To derive the inner expansion around y = 0 we set » = y/x as the inner variable
and obtain for the leading term v;, of the inner expansion the equation

o Avgo/dn + Bujg—[(y + 1) /2710 = @/ Y M. (32)

Unfortunately the left-hand side of (32) contains the nonlinear operator of the full
equation. We therefore obtain an approximate solution by assuming an exponential
form for v,, and choosing the exponent so that the differential equation is satisfied
at p =0, i.e.

Do = D+ (1= 0,) €xp (=0 7), (33.1)

ay = {B*—1—(yM5)"'}/ (1 —vg). (33.2)
Note that B* and v,, the uniform velocity in the outer field, are still to be
determined. Similarly, instead of attempting to solve the inner equation around

y = 1, we assume an exponential form for the leading term v,; of that inner expansion
and choose the exponent so that the equation is satisfied at 9, = (1 —y)/x =0, i.e.

Vi1 = ?)00+(2)1—?J00) exXp (_al 771)5 (341)
a, = {—=B*+v, + (T} /yM§v,)}/ (v, —v,). (34.2)

It may be observed that both forms chosen satisfy the boundary conditions and the
equation at their respective boundaries and smoothly match the uniform field as

7,1, —>0.

The velocity fields given by (33), (30) and (34) are now substituted into the left side
of the integral equation (31) to obtain a second relation between v, and B* in
addition to (30.1). These can then be solved (see Shankar & Deshpande 19905 for
details) to yield the approximate solution

vy =14y (v <1), (35.1)
B¥ = B*+b={1+(yM2) }+b (b<1), (35.2)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 12. Comparison of the velocity profiles as predicted by the asymptotic theory for small §/H
with the ‘exact’ solution. ———, Equation (36); ‘exact’ solution. Pr = 0.75, M, = 0.5;
(@) T, = 0.95, p, = 1.0337; (b) T, = 1.1, p, = 0.91668.

where

ky = (Mg—1)/yMz, ky={2+(y—1)M3/2yM;, ky = B§—v,—(T/yMjv,),
fo = —[AT/ME—(1—03)/2]/7,

N = fokoky+{BE ky— ((y +1)/4y) ky(v, + 3)}(Av)?,

D, = Bf{ky— 2k, Av—k,(Av)?} — Ek2(Av)2 — fo (k2 + K, k,),

Dy = ((y+1)/4y){4ky—2ky(3+v,) Av— (Bky+ k(3 +v,)) (Av)?},

v =N/(D,—D,), b= (k0+/clv)v. J

The above approximate solution for 8/H >0 explicitly shows the complex
dependence of the uniform velocity field (v, = 1+v) on the five parameters M,, §/H,
y, v, and T,. When 6/H - 0 we know that ¢ onveotlon is predominant with conduction
of importance only near the boundaries. Thus one expects the velocity and
temperature to take on uniform values, close to the lower surface values, over most
of the field with rapid changes in a thin boundary layer near the upper surface.
Indeed in the inviscid case of §3 the uniform values are exactly equal to the lower
surface values as 8/H —>0. When viscosity is present the uniform value for the
velocity v, is close to 1 but not equal to 1; in fact v, <v <1 or 1 <w, <wv,. The
dependen(e on all the parameters is oomplex but it is qulte possible, as has been
shown, for the flow to be cooled below the upper and lower surface temperatures.
Cooling can take place in spite of dissipation.

Finally, figure 12 shows some velocity profiles computed using (33)—(36) for some
typical values of the parameters. It is remarkable, considering all the approximations
made, how good the agreement is in figure 12« it is not so good in figure 126 mainly
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Table 2. The variation of A* and B* with Prandtl number; §/H =0.25

M,=0.5,T =0.95, My=051T =14,
p, = 1.03376 p, =02
r A N A Al
Pr A* B* A* B*
0 1.083694  3.400083 — —

0.10 1.082841  3.411418 1.109188  3.177964
0.20 1.082608 3.420627 1.116836  3.055302
0.25 1.082625  3.424657  1.114318  3.013119
0.30  1.082700  3.428390  1.109577  2.974362
040 1.082970 3.435144 1.095181  2.897867
0.50 1.083346 3.441154 1.075025  2.816822
0.60 1.083784  3.446591 1.049388  2.728805
0.70  1.084261  3.451576 1.018525  2.633358
0.75 1.084508  3.453927 1.001243  2.582922
0.80 1.084760  3.456197  0.982791  2.530759
0.90 1.085273  3.460523  0.942607  2.421584
1.00 1.085793  3.464607  0.898416  2.306500

because v is not sufficiently small to justify the approximations made. Suggestions
for better approximations are made in Shankar & Deshpande (19905).

5. The viscous solution for arbitrary Prandtl number

We now consider the general case of the flow of a vapour with arbitrary Prandtl
number. The momentum and energy equations (1.2) and (1.3) can both be integrated
once to give the pair of coupled nonlinear equations

Ndv 3[ 1 T
— = = — 2 3
(m ~>dy 4{VM§U+U B } (37.1)
(8/H)dT/dy = [T/y—Yy— 1) MEv*+ (y—1) M3 B*v—A%], (37.2)

where B* and A* are constants to be determined. Observe that when the Prandtl
number vanishes (37.1) reduces to the integrated inviscid momentum equation (5).
As before four boundary conditions, namely v, =T, =1, v(1) =v,, T(1) =T, are
available to determine the two integration constants and 4* and B*.

The solution procedure is as follows. Initial values are guessed for A* and B*; using
these, equations (37) are integrated using an accurate Runge-Kutta scheme to yield
values for v(1) and T(1). If |v(1) —v,| and |7(1) —T}| are not sufficiently small 4* and
B* are changed appropriately until convergence to the desired boundary values is
achieved. Efficiency is achieved by carefully choosing the initial values and by using
a generalized Newton—Raphson technique to hunt for the ‘eigenvalues’. Table 2
shows how A* and B* vary with Prandtl number for a given choice of the other
parameters. Note that when 7; = 0.95 the pressure ratio chosen, p, = 1.03376,
corresponded to the inviscid pressure ratio p,; and so the constants 4* and B* tend
to their inviscid values A} and B} as Pr— 0. For the other case shown, p, = 0.2 # p,,
and so a comparison with the inviscid result is not possible.

One may observe from figure 13a how the temperature profile changes as the
Prandtl number is varied in the range 0.1 < Pr < 1.0. We are not concerned with
Prandtl numbers greater than 1 since our interest is limited to gases and vapours. In

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\
L\

A
1

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
\
)

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

506 P. N. Shankar and M. D. Deshpande
10 )
r ’LO_(b)

vl
0.5r ‘ 05k

Pr=0.75g\4

01\\]
0 L — 1 0 N ] I
095 10 10 14 18

Figure 13. (a)_The effect of Prandtl number on the temperature profile. M, = 0.5, T} = 0.95,
p, = 1.03376, J/H 0.25. (b) The effect of Prandtl number on the temperature profile. M = 0.5,
T, =14, p, =02, J/H 0.25. (¢) The temperature profile as affected by the Prandtl nurnber
M =0.8, T, =0.95, p, =08, §/H = 0.25.

the higher range of Prandtl numbers the temperature overshoot phenomenon is
apparent. As the Prandtl number is reduced the profiles smoothly merge to the
inviseid profile (corresponding to Pr = 0), where there is no overshoot. Note that in
this case p, = p,;. In figure 13b the upper pressure corresponds to a case forbidden
by the inviscid model. Note that the temperature overshoot decreases in magnitude
as Pr—0, presumably because viscous heating is less severe. Figure 13¢ shows the
effect of Prandtl number in a case that would be considered supercritical in the
inviscid limit. Note the undershoots in the viscous cases and the persistence of
viscous effects at as low a Prandtl number as 0.2.

We now briefly examine the behaviour of the solutions in the general case when

= §/H >0,0. For the limit of small heights or y>co we assume the following
forms as suggested by the analysis of §4.1,

v=0O 4y M4 (38.1)
T=TO4x1TO4 . ., (38.2)
B* = yB*CD 4. B*O 4 (38.3)
A* = yA*CD 4 4*O 4 (38.4)

If these forms are substituted into equations (37) the solution to leading order is
found to be

vO(y) = 1 — Awy, (39.1)

TO(y) = 1+ {3y — 1) My Pr(Av)? — AT} y—3(y— )M Pr(Ao)y?,  (39.2)
BV = 4Pp(1—vp)), (39.3)

A* = Yy—1) M2 Pr{Av—0.5(Av)?} + AT, (39.4)

where Av = 1 —v», and AT = 1 —1T,. These solutions are quite interesting in that while
the velocity profile is linear irrespective of the Prandtl number the temperature is
strongly influenced by the parameter. When Pr—0 the temperature profile is linear
exactly as in the inviscid case; but otherwise the temperature profile is quadratic in
y as shown in figure 10a. This surprising result is again entirely due to the effect of
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viscosity in the fluid. Note that if the temperature attains a maximum in the field,
it will in this limit be given by
{&(y—1) M} Pr(Av)* — AT}

4(5(y — 1)) Mg Pr(Av)®

Tax = 1+ (40)

If the parameters pertaining to figure 10 are inserted into the formula above, the
peak temperature is estimated very accurately. As regards the limit y -0, we know
that in both the inviscid and Pr = 2 cases the velocity and temperature are uniform
over most of the field. In the inviscid case the uniform values taken correspond to the
lower surface values with a boundary layer near the top; in the Pr = 2 case boundary
layers exist near both surfaces. This suggests that in (37), when y — 0 the left hand
side should be dropped. Thus if »,, and 7, are the constant values for velocity and
temperature over most of the field, they have to satisfy

(YM) " T /v + v +B* = 0, (41.1)
T, /y—0.5(y—1)M2v2 + (y— 1) M2v, B*—A* = 0. (41.2)

It should be noted that B* and 4* are functions of Prandtl number. To proceed we
need as in §4.2 to develop matching inner expansions and then use two integral
equations. This can be done but we shall not proceed here in this direction.

6. Discussion

We have seen in the foregoing the very considerable effects of nonlinearity and
dissipation on the gas dynamic field in liquid—vapour phase change. Nonlinearity
alone leads to results that are quantitatively different from the commonly used
linearized inviscid calculations but are not qualitatively very different; some
qualitative differences do exist, especially for higher Mach numbers, but they may
not be very important practically. Viscosity on the other hand produces dramatic
changes both qualitative and quantitative. Through the action of viscous normal
stresses and dissipation the temperature profile, which is monotonic in an inviscid
fluid, can suffer overshoots or undershoots, whose magnitude can be very large
indeed. For small values of the height parameter 6/H, the viscous field has narrow
boundary layers at both boundaries, whereas the inviscid field has a boundary layer
only at the top; both fields are uniform outside the boundary layers. For large values
of the height parameter the temperature profile is, surprisingly, quadratic in y when
viscosity is present rather than linear as when it is absent. In addition to these
striking qualitative differences the quantitative differences can also be very large
depending on the values of the parameters such as M, §/H, P, ete.

It might be appropriate at this point to recall an interesting circumstance that
arose in the inviscid situation. It was found then that M, = 1/4/y represented a
critical Mach number; it was not possible to accelerate or decelerate through this
Mach number. Moreover, unlike in a subcritical or supersonic flow, the temperature
profile was concave upwards. What happens in the viscous field ? To answer this one
must try to find an equivalent to (14) of §3. It is possible by combining the energy
equation with the momentum equation to obtain a relation of the type

(/H)d*T/dy? = (1 —yM?) 2 F(M, M’ ,M",T").
Whereas in the inviscid case (14) implied the impossibility of the Mach number
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 14. The effect on the temperature profile of varying the height parameter §/H in a
transcritical case. Pr = 0.75, M, = 0.8, T, = 0.95, p, = 0.8.

being 1/4/7 in the interior of the field, the above equation shows that singularities
need not arise if ¥ = 0 when M(y) equalled 1/+/. This, indeed, is the case and it is
quite possible for a viscous flow to negotiate M, in the interior of the field. As regards
the nature of the temperature profiles in the transcritical case the situation is
complex as is illustrated in figure 14. For §/H = 10 the curve is convex upwards
unlike the situation normally obtained in transcritical cases; for small 6/H, however,
the curves are concave with large temperature undershoots. The role of viscosity is
indeed complex.

The principal motivation for the current analysis has been the potential application
to the condensation—evaporation problem. A successful procedure used so far in
tackling the problem has been one in which the continuum, inviscid gas dynamic
equations are assumed to apply over most of the field with gas kinetic effects confined
to Knudsen layers adjacent to the liquid surfaces (Aoki & Cercignani 1983 ; Shankar
1988). So far such approaches have involved linearization and have neglected viscous
normal stress effects and dissipation. Without solving the full phase change problem,
which we have not done so far, we wish now to see what implications, if any, the
present nonlinear, viscous analysis would have on the latter approaches. For
purposes of comparison we have used equations (5) and (6) of Aoki & Cercignani
(1983) to compute the jumps and the linearized profile ; the pressure ratio p, has been
computed using the inviscid (nonlinear) analysis. Figure 15a and b are now to be
compared with figure 2 of Aoki & Cercignani. It may now be recalled that the non-
dimensional parameter § = L/RT,—1, where L is the latent heat, arises naturally in
the linearized analysis of phase change. By Trouton’s rule f takes the value 9 for all
liquids but in reality the parameter normally takes on much larger values, e.g. for
water f & 18-20 and for mercury £ =& 20-22 in our range of interest. Figure 15a cor-
responds to a somewhat low value of 6 for § only to permit comparison with figure 2
of Aoki & Cercignani; figure 156 deals with the realistic value of 20 for f. In figure
15a the nonlinear effects are small but the viscous effects, though small, change the
qualitative picture by permitting the temperature undershoot. In figure 156, whose
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Figure 15. (a) The effects of nonlinearity and viscosity on the gas dynamic temperature field in
liquid-vapour phase change. ———, Linearized analysis (Aoki & Cercignani 1983); ----- , inviseid,
nonlinear; , viscous. Pr=0.75, My =04, 6/H=0.1, T, = 1.1, p, = p,, = 0.96164. (b) The
effects of nonlinearity and viscosity on the gas dynamic temperature field in liquid—vapour phase
change. ———, Linearized analysis (Aoki & Cercignani 1983); ---, inviscid nonlinear ; ——, viscous.
Pr=0.75. M =04,8/H=0.1,T, = 1.3, p, = p,, = 0.86666.

£ value is realistic and close to that of mercury and most other vapours, the
temperature undershoot is even more pronounced. Choosing a larger M, and smaller
8/H would, naturally, lead to even greater discrepancies. We must point out once
again that we have yet to solve the full phase change problem; the above data only
show that nonlinear and viscous effects are bound to be of very great significance.

Finally one might ask whether the temperature profiles predicted here have been
observed experimentally ? It is an unfortunate fact that very few experiments have
been performed in this area. Reliable experiments are difficult to perform because
one has to work at low densities, avoid contamination of the liquid surfaces and the
vapour, ete.; further, for the effects to be large one needs to have y as high as
possible. The only experiments that we are aware of are our own (Deshpande &
Shankar 1988) using mercury as the working fluid. Figure 16 shows a comparison of
some data from those experiments with a theoretical calculation assuming certain
values of the parameters M,,5/H, etc. All that we wish to show is that it is possible
to compute a viscous field temperature profile which has the same S-shaped
character as the experimental data; note that no choice of parameters could lead to
such a shape from an inviscid analysis, linear or nonlinear! The present work also
shows the importance of also measuring the velocity field in any experiment: this is
a difficult task but if done would help to make detailed comparisons with the theory
possible.

We have said nothing here on the question of the anomalous temperature
distribution predicted by the linearized theories of condensation and evaporation.
Unless the coupling of the gas dynamic field to the Knudsen layers is completed it
would be premature to predict anything on this issue. It is clear from the present
analysis, however, that the assumption that the pressure is constant is likely to be
a poor one and this is bound to affect the computation of the temperature
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Figure 16. A qualitative comparison of some experimental data and a theoretical temperature

distribution. (a) The experimental data are taken from Deshpande & Shankar (1988). (b) The
theoretical distribution is for Pr = 0.75, M, = 0.5, §/H = 0.1, T} = 0.95 and p, = 0.9.

distribution. Both the magnitude of the temperature jumps and the temperature
distribution itself are likely to be strongly influenced by viscous effects, especially in
massive phase change. The present analysis in fact shows that the temperature
distribution can be even more peculiar than had hitherto been imagined. But detailed
analysis including that of the Knudsen layers has still to be done to confirm this.

7. Conclusion

We have shown in this paper that nonlinearity and viscosity can have large, if not
dramatic effects, on the gas dynamic field in liquid-vapour phase change. The
principal results are that the temperature profile can admit a non-monotonic
behaviour with undershoots and overshoots and that the temperature peaks can be
large. It is possible that the spectacularly large peaks, predicted by the theory for
some values of the parameters, may never actually be achieved in practice because
of practical limitations. However, it is difficult not to speculate on the possibility
that these extreme results may be relevant to other related areas of investigation,
e.g. astrophysics. Quantitative aspects apart, it is now clear that at least qualitatively
the role of viscosity has so far been vastly underestimated. We are confident that
many of the remarkable predictions of the present theory will in due course be
confirmed by more careful experiments than have so far been performed.
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